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Abstract

The performance of distributed hydrological models depends on the resolution, both
spatial and temporal, of the rainfall surface data introduced. The estimation of quantita-
tive precipitation from meteorological radar or satellite can improve hydrological model
results, thanks to an indirect estimation at higher spatial and temporal resolution. In5

this work, composed radar data from a network of three C-band radars, with 6-minutal
temporal and 2×2 km2 spatial resolution, provided by the Catalan Meteorological Ser-
vice, is used to feed the RIBS distributed hydrological model. A Window Probability
Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall
to improve the observed rainfall sub-estimation in both convective and stratiform Z/R10

relations used over Catalonia. Once the rainfall field has been adequately obtained,
an advection correction, based on cross-correlation between two consecutive images,
was introduced to get several time resolutions from 1 min to 30 min. Each different
resolution is treated as an independent event, resulting in a probable range of input
rainfall data. This ensemble of rainfall data is used, together with other sources of un-15

certainty, such as the initial basin state or the accuracy of discharge measurements, to
calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time
resolutions was implemented by comparing the various results with real values from
stream-flow measurement stations.

1 Introduction20

Accurate flash flood hydrological modeling requires both a suitable hydrologic model
and an appropriate spatial and temporal resolution on rainfall estimation. It is known
that heavy rainfall variability has a great influence on a basins processes (Winchell
et al., 1998), especially on convective precipitation events (Bell and Moore, 2000).
Distributed models may thus improve the simulation of flash floods events, which are25

related to heavy rainfall amounts or high intensities, as compared to lumped models
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(Krajewski et al., 1991; Arnaud et al., 2002). Furthermore, a later study (Carpenter
and Georgakakos, 2006) has shown that distributed model simulations are statistically
distinguishable from the lumped model simulations for watersheds around 1000 km2,
which is a usual basin size for flash-flood prone basins.

The success of hydrological models is usually constrained by the rainfall data they5

use. Such input data could be provided by rain gage networks and deterministic or
even probabilistic meteorological models. These data sources usually present serious
disadvantages for midsize and small basins with irregular spatial rainfall distribution.
Surface rain gage networks with an appropriate resolution as raw input for accurate
hydrological modeling are rare and it is not so easy to implement a meteorological10

model with a high enough grid resolution due to data and computational requirements.
Meteorological radar can solve this problem, thanks to indirect rainfall estimations at
higher spatial and temporal resolutions.

However, this indirect estimation has different sources of errors, from ground clutter
or beam overshooting (Sánchez-Diezma et al., 2001) to radar calibration or attenuation15

(Delrieu et al., 2000). These errors could be reduced by removing static radar echoes,
periodic maintenance or selecting the higher value of reflectivity from each radar mak-
ing up the network. Once these errors have been partially removed and the reflectivity
has been interpolated into different levels called Constant Altitude Plan Position Indica-
tor (CAPPI), the rainfall intensity could be obtained from low level by Z/R relations. The20

bibliography shows many Z/R relations, from the classical Marshall and Palmer (1948)
to the latest ones for different climate types, rain regimes and climatic seasons (Lee
and Zawadzki, 2005; Sánchez-Diezma et al., 2000; Steiner et al., 1995; Haddad et al.,
1997, to name just a few contributions).

The choice of one or another Z/R relation could alter the rainfall intensity obtained.25

Several methods have been developed in recent years over the Mediterranean area to
obtain a suitable QPE, although they are strongly dependent on case studies. Apart
from Z/R relations, there are other methods of obtaining a suitable rainfall field. Some of
the latest methods are related to direct correction of the rainfall map using multi-linear
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regression (Morin and Gabella, 2007), merging rain gauge and radar data by means
of non-parametric spatial models (Velasco-Forero et al., 2004) or studying the Vertical
Profile of Reflectivity (Franco et al., 2008). Matching the unconditional probabilities of
rainfall intensity obtained from rain gauges and reflectivity (Rosenfeld et al., 1994) is
another approach to this problem. This method, which is known as Window Probabilis-5

tic Matching Method (WPMM, hereinafter), will be applied in this paper.
Another problem is that the rainfall intensity, and especially the convective one, is a

field in continuous variation due to flux advections or mountain enhancement. Although
higher temporal resolution captures this variation better and improves the subsequent
rainfall estimation, this resolution is not high enough in some events, and a higher tem-10

poral resolution is required. In this sense, Anagnostou and Krajewski (1999) proposed
an advection correction scheme based in a cross-correlation technique. A similar so-
lution will be introduced in the present work.

The Real-time Interactive Basin Simulator (RIBS) is a topography-based, rainfall-
runoff model that can be used for real-time flood forecasting in midsize and large basins15

(Garrote and Bras, 1995). Once the rainfall is well estimated and a suitable hydrolog-
ical model is applied, the key factor is the calibration of the hydrological model. It is
known that non-linear features of distributed models could amplify the intrinsic rain-
fall errors (Smith et al., 2004). For this reason, distributed models are optimized for
real-time flood simulation, and some physical processes are parameterized. The pa-20

rameterization of these physical processes requires the calibration of some variables.
In an early work about parameterization in distributed models (Refsgaard, 1997), it
was demonstrated that the lack of field data means that the calibration parameters
lose some of their physical interpretation. According to their non-physical meaning and
taking into account the inherent variability of these parameters it has been shown by25

Madsen (2003) that the best way to estimate the value of these parameters is based
on multiple objective functions. In previous works (Mediero et al., 2007; Garrote et al.,
2007) a probabilistic calibration by Pareto methods was proposed for distributed mod-
els to be used in flood forecasting. This calibration technique, and the consequent

7998

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/7995/2010/hessd-7-7995-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/7995/2010/hessd-7-7995-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 7995–8043, 2010

Effect time resolution

A. Atencia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

output discharge obtained, has dependence with spatial and temporal rainfall scale.
The optimal horizontal resolution is determined by low-scale hydrological processes,
such as hill-slope processes (Robinson et al., 1996) or catchment processes (Yang
et al., 2000). Because of this, it could be concluded that the best horizontal rainfall
resolution is the highest one. Temporal processes have a different hydrological behav-5

ior. Some authors have found out a characteristic time scale for hydrological response
(Morin et al., 2001) from minutes to hours. This fact could be related to concentration
time or flow propagation processes, so discovering optimal rainfall time resolution for
a probabilistically calibrated distributed model would be extremely useful to determine
the best input rainfall time step.10

The goal of this paper is to analyze the sensitivity of probabilistic hydrological cal-
ibration of the RIBS distributed model (Garrote and Bras, 1995) to radar rainfall time
resolution, with the final aim of having a real-time flood forecasting scheme in a Mediter-
ranean flash-flood prone basin. For this purpose, the WPMM methodology will be ap-
plied to get the best Z/R relation. The advection correction scheme allows downscaling15

of the radar imagery from several minutes to one minute, but will at the same time be
used to improve the rainfall estimation. A sensitivity study of several rainfall time inter-
vals will be carried out by means of a probabilistic calibration within the RIBS model.

2 Case studies and data

Catalonia is a region situated in the northeast corner of the Iberian Peninsula. Due to20

its proximity to the warm Mediterranean sea and its complex orography with several
mountain ranges parallel to the seashore line (Fig. 1), the presence of atmospheric
instability usually produces intense precipitation events during the summer and autumn
seasons (Llasat et al., 2003). These heavy rainfall phenomena caused 217 floods
over Catalonia from 1901 to 2000, of which more than 59% were flash flood events25

(Barnolas and Llasat, 2007). The hydrologic timescale of most watersheds is of the
order of a few hours, and flash floods develop rapidly during the early autumn season
and suddenly inundate town streams putting citizens at high risk.
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One of the most prone basins in Catalonia is the Besòs Basin (Fig. 1). The Besòs
catchment (1020 km2) is located to the North of Barcelona city over one of the most
densely populated watersheds in Catalonia, having more than two million people. It
is a typical example of complex Mediterranean catchments with great heterogeneity,
from mountains over 1000 m to rural plains that have been undergoing a continuous5

urbanization process over the last decades. After two catastrophic floods in 1982 in
Spain, considerable investment was devoted to monitoring the catchments for hydro-
logical purposes. It is now instrumented by several telemetered rain and streamflow
gauges (see Fig. 2) from SAIH (Automatic System of Hydrological Information) of the
Catalan Water Agency (ACA) to a river park built in the river mouth to mitigate flood10

impacts.
The present work analyses four flash flood events with a great social impact (Llasat

et al., 2008) that were studied within the framework of the FLASH project. The most
relevant rainfall amounts of those cases are detailed in Table 1. It can be observed that
all of them have an average rainfall amount over the Besòs basin exceeding 46 mm.15

The peak 5-minute intensities during these events were from 80 mm/h to 135 mm/h.
The ground rainfall data available come from two different networks. The SAIH rain-

gauge network of the Catalan Agency of Water (ACA) is composed of 126 tipping-
bucket automatic raingauges covering an area of about 16 000 km2 called the Internal
Basins of Catalonia (IBS, hereinafter) (Fig. 1). The precipitation is accumulated and20

recorded every 5 min. In this paper all the 5-min series were submitted to a data qual-
ity control (Ceperuelo and Llasat, 2004). The second one, called XEMA (Automatic
Weather Station Network) and supported by Catalan Meteorological Service (SMC), is
composed of 158 rain-gauges and covers Catalonia as a whole (around 32 114 km2).
This network records the precipitation in two different temporal intervals. There are25

47 stations which accumulate the precipitation every 30 min, while the remaining 111
stations have one-hour temporal resolution. By merging the two networks a new one
could be obtained with a mean density of 0.8 gauges every 100 km2 (1.5 gauges every
100 km2 in the Besòs basin).
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The radar rainfall estimation was implemented using the Catalan Meteorological Ser-
vice (SMC) radar network data that covers an area of 53 000 km2 over Catalonia and
its surroundings. This network is made up of three C-band Doppler radars; a new radar
was inaugurated in September 2008 but was not used in this study. The most important
characteristics of the composed CAPPI imagery are the spatial resolution (2×2 km2),5

time resolution (6 min) and vertical resolution (1 km) from 1 km to 10 km of altitude (10
levels). The CAPPI are calculated by means of the IRIS program which is based on
linear interpolation in range to the selected heights on Spherical coordinates with earth
curvature correction to preserve data quality. The radar imagery passed a first filter to
remove ground clutter (Bech et al., 2003). A second filter was applied by the authors10

to remove the interference between radars (no data in radar location) and another still
target, such as a wind power plant.

The hydrological data was taken from a stream-flow gauge network composed of 100
stations from which six are located in the Besòs Basin (Fig. 2). The catchment is well
covered by the SMC radar (overlap of three radar domains). Another necessary data15

for the hydrological model is the digital elevation model and soil type which have been
provided by the Cartographic Institute of Catalonia (ICC) with a 200 m×200 m reso-
lution. The function of this geomorphologic data will be explained in the Methodology
section.

3 Methodology20

The aim of the present work is to get the best rainfall time resolution which minimizes
error from hydrological model behavior over a specific basin for heavy rainfall events.
For this purpose, a probabilistic calibration of the distributed hydrological model will be
carried out by minimization of several objective functions. The radar rainfall estimation
must be good enough to obtain an accurate result and to provide us with different25

resolutions in order to implement the sensitivity test. For this reason, the methodology
is divided into two parts. The first part describes the radar rainfall estimation and the
second part presents the probabilistic calibration of the hydrologic model.
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3.1 Radar rainfall estimation

3.1.1 Method to calculate Z/R relation

The radar reflectivity (Z [mm6/mm3]) provides information about the mean scatter
power that is a moment of Drop Size Distribution (DSD). On the other hand, rainfall
intensity can also be related to DSD and terminal velocity. There are many method-5

ologies based on DSD models to get these relations (Sempere-Torresl et al., 2000;
Uijlenhoet et al., 2003; Chapon et al., 2008).

In Atencia et al. (2008) a large number of Z/R relations were tested for the four
selected heavy rainfall events. The same paper showed that QPE results were not
good enough for hydrological purposes due to a huge sub-estimation.10

To face the issue of QPE a Z/R relation was obtained by means of applying the
Window Probability Matching Method (WPMM). This method (Rosenfeld et al., 1994)
is based on matching the unconditional probabilities of rainfall and reflectivity. Obvi-
ously, point measures from radar and rain gauge are plagued by timing and spatial
errors. Many of the timing and geometrical errors can be eliminated by applying the15

probability matching method using synchronous time series (Rosenfeld et al., 1993).
This is achieved by matching rain gauge intensities to radar reflectivities taken only
from small windows centered over the gauges in time and space. Following Rosenfeld
et al. (1993), who is based on Zawadzki (1975), a relation between the window area
(A [km2]) and the spread of the rain gauge measurement in time (T [hour]) could be20

obtained:

T =
1
3
· A

1
2

V
(1)

where V [km/h] represents the horizontal velocity. Atlas et al. (1990) and Rigo
(2004) found out a climatic horizontal velocity of convective rainfall area of about
20 km/h. Thus, the use of 3×3 pixels’ windows involves the use of a rain gauge time25

concentration of 6 min. In this paper, the rain gauge has a time resolution of 5 min, but
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a temporal window of 30 min is used, which is a time interval greater than the optimal
value. This fact ensures an optimal correlation between both radar and rain gauge rain-
fall measurements (Rosenfeld et al., 1994). Moreover, the radar time resolution (6 min)
is optimum for the selected window. In that case, radar windows could be constructed.
Each radar window is considered as a single measurement that can be selected at ran-5

dom, independent of other windows. The process to construct an all-windows dataset
is divided into three steps:

– Firstly, the radar window (3×3 pixels) around the rain gauge is selected (Fig. 3).

– Secondly, each rain gauge’s independent window for every period of 30 min is
composed of six 5-minute intensities from SAIH rain gauge (Fig.4a)10

– Thirdly, each reflectivity’s independent window for every period of 30 min is taken
from every pixel (45 in total) coming from five radar windows of each 6-minute
radar image (Fig. 4b)

Once the overall dataset of independent windows have been built, the calculation of
the Z/R relation could be made from a random sub-sample of that data. To reproduce15

the original method (Rosenfeld et al., 1994) which computed the Z/R relationship by
comparing quantiles, a non-parametric technique is used. To avoid problems of tail
stability founded in empirical probability distribution function (Kaplan and Meier, 1958),
a technique based on a Kernel smoothing density function (Parzen, 1962) is applied.
In order to test another smoothed relation, different parametric PDFs were fitted for20

both rainfall and reflectivity distribution. The ones which maximize the likelihood were
exponential function for rain gauge, whereas reflectivity’s PDF is well fitted by Gamma
distribution. In Fig. 5, a random sub-sample of 25% of the overall population of win-
dows is plotted. Although, the distribution does not fit well for reflectivity values below
19 dBZ, the contribution of this precipitation (less than 0.1 mm/h) can be ignored in25

comparison with the heavy rainfall recorded.
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From both parametric and non-parametric techniques, the derivation of the Z/R rela-
tion is very simple and straightforward. This procedure is repeated for various sizes of
sub-samples. The minimum population percentage (1%) takes at least 350 values (1%
of 36288, which comes from 126 stations ∗ 48 time periods ∗ 6 values). The accuracy of
the rainfall intensity that is matched to a specific observed radar reflectivity is evaluated5

by randomization methods (200 random matches) because every sub-sample gives dif-
ferent Z/R relations. This randomization process not only ensures the minimization of
spatial and geometrical error, but also provides probabilistic information about the pop-
ulation convergence to a final relationship. In this way, Standard Deviation (SD) serves
the purpose of assessing the required sample size necessary to obtain a stable Z/R10

relation (Fig. 6). The SD is also used to evaluate the consistency of the new relation.
The bigger the population is, the lower the SD. Due to this trend, the technique of using
the mean to get the final relation is absolutely sound.

3.1.2 Stratiform and convective contribution

Adapting the Z/R relationship to different rain types within a given storm or event seems15

to be a promising way to improve radar QPE (Lee and Zawadzki, 2005). Rosenfeld
et al. (1995) improve the accuracy of WPMM estimated rainfall by means of Objective
classification criteria based on parameters such as freezing level or bright-band frac-
tion. In the present work, the classification criteria is carried out within a 3-D scheme to
recognize convective/stratiform areas, developed by Biggerstaff and Listemaa (2000)20

and based on a previous one (Steiner et al., 1995). These algorithms distinguish be-
tween convective and stratiform areas according to reflectivity thresholds and gradients
within different CAPPI levels. These thresholds were regionalized to Catalonia by Rigo
and Llasat (2004). According to this methodology, in the present paper each different
subset of every window is counted in different groups. Therefore, for a same rain gauge25

intensity window, two radar reflectivity windows are set. This approach to classification
criteria results in a non-univocal rain gauge probability distribution function. The fact
that a given rainfall intensity could be related to different precipitation types is due to
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the fact that precipitation type definition is done by vertical velocity scales or genesis
(Houze, 1993) and not rainfall intensity. Besides, recorded intensity could not be re-
lated to the rain type of the pixel above this rain gauge because of geometrical errors
commented previously. Subsequently, non-univocal relation between intensity and rain
type should be calculated as two independent univocal datasets. Once all convective5

and stratiform types have been constructed, the procedure described above is applied
to obtain two new Z/R relations for different rain regimes.

3.1.3 Advection correction

The temporal sampling effect of the radar observations can lead to significant errors
in the estimated accumulation rainfall as shown in several studies (Liu and Krajewski,10

1996). To correct this source of error, Anagnostou and Krajewski (1999) proposed an
advection correction method based on a cross-correlation technique. This procedure
could be applied not only to correct this rainfall estimation, but also for the purpose
of increasing the time resolution. For this reason, instead of calculating the cross-
correlation coefficient between the two whole images, the first image is divided into15

a number of template tiles (Fig. 7a). Each template window will be searched for in
the second image by using a search window (dashed line in Fig. 7a and 7b), whose
size depends on the maximum storm speed that is expected between two sequential
images. In the present work this technique was used to obtain the advective displace-
ment vector (vector in Fig. 7b), as the vector which maximizes the normalized spatial20

cross-correlation function r(p,q).

r(p,q)=
1

σAσB
×
∑∑

{[A(x,y)−A(x,y)]·

·[B(x+p,y+q)−B(x+p,y+q)]}=

=
Cov(p,q)
σAσB

(2)
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where the pixel values of the template window are A(x,y), and the corresponding pixels
in the second window are B(x,y) at no lag and B(x+p,y+q) for a lag (p, q). A(x,y) and
B(x+p,y +q) correspond to the mean rainfall values of each window, and σA and σB
are the standard deviations. The displacement (p,q) at the maximum value of the cross
correlation determines the advective displacement vector, signifying a storm or cell5

movement (Dransfeld et al., 2006). This could be described by an advective velocity c
[km/h] and displacement angle θ, which are defined by the following equations:

c=
[(pmax ·∆x)2+ (qmax ·∆y)2]

1
2

∆t
(3)

θ=arctan
(qmax ·∆y
pmax ·∆x

)
(4)

where pmax and qmax represent the spatial displacement in a grid of ∆x × ∆y pixel size.10

∆t is the time interval between both images.
Once the advective displacement vector has been obtained by this method, the

shape morphology transformation is carried out by means of temporal weights based
on a more complex shape transformation (Turk and O’Brien, 2005). Both images, first
and second, are extrapolated by means of the computed velocity to the same temporal15

interval. Then the pixel value is calculated as the temporal-weighted sum of the two
images as shown in the next function:

R(x,y,t)=
1

T 2
·
∑{

(T −t) · Ã(t)+t · B̃(t)
}

(5)

where the transformated field Ã and B̃ are calculated as a time function by:

Ã(t)=A
[
x− t

T
·c ·cosθ,y− t

T
·c ·sinθ

]
(6)20

B̃(t)=B
[
x+

T −t
T

·c ·cosθ,y+
T −t
T

·c ·sinθ
]

(7)
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where T [hour] is the original time resolution of radar.
The template size selected is 10×8 pixels whereas the search window for the sec-

ond image is 16×14 pixels. This size was calculated taking into account a maximum
storm movement lower than 140 km/h following the works of Steinacker et al. (2000)
and Rigo (2004). Fig. 8 shows the downscaling from 6 min to 1 min.5

3.2 Hydrological modeling

3.2.1 Real-Time Interactive Basin Simulator (RIBS)

The Real-time Interactive Basin Simulator (RIBS) is a topography-based, rainfall-runoff
model which can be used for real-time flood forecasting in midsize and large basins
(Garrote and Bras, 1995). The use of this model is especially attractive in connection10

with a meteorological radar and distributed rainfall forecasting methods. The RIBS
model is largely based on the detailed topographical information provided by digital
elevation models (DEM). Basin representation adopts the rectangular grid of the DEM,
and other soil properties, input data and state variables are also represented as data
layers using the same scheme. The basic objective is to map the topographically driven15

evolution of saturated areas as the storm progresses. Two modes of runoff generation
are simulated: infiltration excess runoff and return flow. RIBS applies a kinematic model
of infiltration to evaluate local runoff generation in grid elements, and also accounts for
lateral moisture flow between elements in a simplified manner.

Saturated hydraulic conductivity is assumed to increase with depth, following the20

relation:

KSy
(y)=K0n ·e−f y (8)

where K0n [mm h−1] is the saturated hydraulic conductivity at the surface in the direc-
tion normal to the surface, y [mm] is depth and f [mm−1] is a parameter that controls
the reduction of saturated hydraulic conductivity with depth. There is an anisotropy25
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between the hydraulic conductivity in the directions normal and parallel to the soil sur-
face, described by the anisotropy ratio α:

α=
K0p

K0n
(9)

where K0p [mm h−1] is the saturated hydraulic conductivity at the surface in the direction
parallel to the surface5

Flow propagation to the basin outlet is computed through distributed convolution,
using as instantaneous response function for each element a Dirac delta function, with
a delay equal to the time of travel from the location of the element to the basin outlet.

To obtain the travel time to the basin outlet, the speeds for hillslope (vh) and stream
(vs) must be defined. Stream velocity is assumed to depend on discharge at the basin10

outlet:

vs(t)=Cv [Q(t)]r (10)

where vs(t) [m/s] is stream velocity at time t, Q(t) is the discharge [m3/s] at the basin
outlet and time t, and Cv and r are parameters.

Hillslope velocity is related to stream velocity through the parameter Kv :15

Kv =
vs(t)

vh(t)
(11)

where vh(t) [m/s] is hillslope velocity at time t and Kv is a parameter.
The model captures the main features of runoff generation processes in watersheds

while keeping computational efficiency for real-time use.

3.2.2 Rainfall data into RIBS Hydrological model20

The RIBS model needs rainfall input data, which are mapped to the rectangular grid of
the DEM, or other soil properties. Because of the fact that radar image and DEM res-
olutions are different and may correspond to different projections, a preliminary treat-
ment of radar images is required. This treatment is divided into several steps. The first
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step is coordinate transformation from Mercator to UTM. This is straightforward using
general projection transformation formulas (Snyder, 1987).

The second step is an interpolation to downscale the radar resolution grid
(2 km×2 km) into DEM resolution (200 m×200 m). The easiest and quickest way is
an ordinary linear interpolation, but this methodology does not preserve exactly the5

total amount of precipitation over the whole domain due to mismatching grids (Fig. 9).
In order to avoid it, another procedure has been developed in the present work. As
shown in Fig. 9, some DEM grid cells are divided into two different reflectivity parts
(grey cell). The main purpose of the new procedure is to preserve the total areal pre-
cipitation amount and it is achieved by an area-weighted interpolation. This could be10

formulated for the example cell as:

Rf =
Subareapixel1 ·Rpixel1+Subareapixel2 ·Rpixel2

Area DEM grid pixel
(12)

or in a general way as:

Rf =

∑
Subareapixeli

·Rpixeli

Area DEM grid pixel
(13)

Once rain rated for every cell of the whole domain has been calculated by this area-15

weighted interpolation, the Besòs basin shape is cut out from the high resolution rainfall
image.

3.2.3 Probabilistic calibration

The distributed RIBS model was calibrated in the Besòs basin with the first three ob-
served events, and validated with the last observed event.20

Basin shape and location of gauging stations are shown in Fig. 2, and their ba-
sic properties are presented in Table 2. The model was calibrated using data from
the Gramenet station, very near the basin outlet. The model was validated for the
Gramenet station and five other gauge stations which were not used for calibration:
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Lliça station in the Tenas river, Montcada station in the Ripoll river, just upstream its
confluence with the Besòs river, Garriga station in the Congost river, Mogent station in
the Mogent river and Mogoda station in the Caldas river.

A probabilistic calibration methodology was applied to obtain the probability density
functions of calibration model parameters, which take into account their inherent vari-5

ability. The probabilistic calibration methodology can be summarized as follows:
Firstly, a sensitivity analysis was carried out over the calibration parameters of the

RIBS model. The observed rainfall data in the first episode in August of 2005 was given
as input, and calibration parameter values were randomized. A modification of the
GSA methodology proposed by Freer et al. (1996) was applied. This analysis showed10

that the most influential parameters in the model output are: the rate of variation of
the hydraulic conductivity in depth (f ), the soil anisotropy coefficient (α), the ratio of
hillslope flow velocity to channel flow velocity (Kv ) and the coefficient of the law that
relates hillslope flow velocity to discharge in the basin outlet (Cv ). The antecedent
moisture content in the basin is also an influential factor, although it is not a model15

parameter.
Secondly, the proper calibration was carried out over the first three recorded

episodes. A large set of synthetic hydrographs was generated by repetitive simula-
tions of the RIBS model for each episode. In this second step, the values of the most
influential model parameters were randomized.20

As the model utilization is the prediction of flash floods, Root Mean Square Error
(RMSE), Mean Absolute Error (MAE) and Nash and Sutcliffe Efficiency Coefficient
(NSE) were selected (14–16). The NSE coefficient was used to assess the predic-
tive power of the simulations (Nash and Sutcliffe, 1970).

RMSE=

√√√√ 1
T s

·
T s∑
t=1

(
Qt

o−Qt
s
)2

(14)25
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MAE=
T s∑
t=1

(
Qt

o−Qt
s
)

(15)

NSE=1−

∑T s
t=1

(
Qt

o−Qt
s

)2

∑T s
t=1

(
Qt

o−Qo

)2
(16)

where Qt
o is the observed discharge at time t, Qt

s is the simulated discharge at time t,
Qo is the mean of observed discharges in the event and T s is the total number of time
steps.5

In a multiobjective calibration no single solution can minimize all the objective func-
tions at the same time (Gupta et al., 1998). Therefore, the Pareto solutions were iden-
tified, in order to find the set of non-inferior solutions (Yapo et al., 1998).

Finally, each model parameter was represented by a probability density function (pdf)
fitted from the set of Pareto solutions. The distribution functions that best fit the variabil-10

ity of each parameter were identified by means of goodnessof-fit tests, i.e. Chi-Squared
test and Kolmogorov-Smirnov test.

A sensitivity analysis was carried out on the time resolution of precipitation. Spa-
tially distributed precipitations were constructed for each event by summing the new
advected radar rainfall estimation with a time resolution of one minute. Six time res-15

olutions were selected for the analysis: 30, 24, 18, 15, 12 and 6 min. The calibration
methodology was carried out for each rainfall time resolution, in order to take into ac-
count that some hydrological parameters may be dependent on time scale. The main
statistics of the distribution of parameter values for each time resolution are presented
in Table 3.20
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3.3 Methods of validation

3.3.1 Radar rainfall

To evaluate the accuracy of radar rainfall estimation three error indexes are calcu-
lated. These are BIAS (17), Root Mean Square Error (18) and Mean Error (19). BIAS,
which is a relative error, provides information about the total amount of precipitation.5

Mean error [mm] defines if rainfall is under/over-estimated. RMSE [mm] determines
the soundness of estimation gauge by gauge.

BIAS= log·
∑
·Ri∑
·Pi

(17)

RMSE=

√∑
(Ri −Pi )2

ni
(18)

Error=

∑
(Ri −Pi )
ni

(19)10

where Ri and Pi are the daily rainfall accumulation derived from the radar and registred
by XEMA rain-gauges respectively.

3.3.2 Hydrological modelling

Probabilistic calibration leads to a pdf that represents the variability of each parameter.
Therefore, the model result is an ensemble distribution of discharges at each time step,15

which is obtained by generating a large enough number of hydrographs sampling from
parameter space. The required number of simulations was defined through a sensitivity
analysis. As shown in Fig. 10, a stabilization of results is reached in a range of 150
to 200 simulations. Therefore, 200 model simulations were carried out to validate the
model, randomizing each model parameter from the pdf obtained in the calibration.20
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The validation was carried out over the last observed episode. Differences between
the validation set and the observed hydrograph were quantified by four measures.
Firstly, two of the measures used for calibrating the model were selected, i.e. RMSE
and MAE, to measure the accuracy of the simulations. Two other measures were
added to improve the validation assessment. Estimation bias was quantified by the5

Nash-Sutcliffe global efficiency index (R2 (MQ0.5) (Eq. 20), which measures the utility
of the median as a forecast (Xiong and O’Connor, 2008). The prediction capability of
the calibrated model was quantified by the Containing Ratio (CR) (Eq. 21), which mea-
sures the number of observations that are not held between the prediction intervals
linked to a given confidence level (Montanari, 2005).10

R2(MQ0.5)=1.0−

T s∑
t=1

[Qt
0−MQt

0.5]2

T s∑
t=1

[Qt
0−Q0]

(20)

where T s is the number of time steps, Qt
0 is the observed discharge at time t, MQt

0.5
is the median of simulated discharges at time t and Q0 is the mean of observed dis-
charges.

CR(α)=

∑
I [Qt

0]

T s
(21)15

where I [Qt
0] is equal to 1 if the observed discharge at time t holds between the confi-

dence interval and α is the confidence level, which was set at 10%.
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4 Results

4.1 WPMM methodology

The four selected heavy rainfall events were produced by very different meteorological
causes. For this reason the calibration method previously presented is applied for each
case, in such a way that eight Z/R relations were obtained due to two fitting methods5

for the four case studies. In the next table (Table 4) the eight power-law functions are
tested for every case.

The results show a major improvement in the three long cases, which are the Octo-
ber, November and September cases. The short case (August) shows results of the
order of the ones obtained in Atencia et al. (2008), where several Z/R relationships10

based on the literature were tested. The new relations reduce the BIAS up to 96%
and the Root Mean Square Error by 40%. It could be observed that, for the most part,
the most suitable data for the calibration is own case data. Nevertheless, the calibra-
tion could be carried out by means of other cases that achieve accurate precipitation
estimations, as the results prove.15

4.2 Advection correction

In the next table (Table 5) the results of applying the advection technique to the best
rainfall estimation method are shown. For the August case, the best Z-R relation ob-
tained in Atencia et al. (2008) was used. In the remaining three cases the matching
probabilities method was applied using the gamma function to smooth the probability20

distribution function. The use of cross-correlation technique to interpolate the rain im-
proved the results obtained previously in all the cases for the root mean square error
and mean error, but it did not change the total radar rainfall field.
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4.3 Sensitivity to precipitation time resolution

The model was validated with the last event at six gage stations: Lliça station on the
Tenas River, Montcada station on the Ripoll River, just upstream of its confluence with
the Besòs river, Gramenet station on the Besòs River, very near the basin outlet, Gar-
riga station on the Congost River, Mogent station on the Mogent River and Mogoda5

station on the Caldas River (Fig. 2).
A validation set of 200 simulated hydrographs was generated for each time resolu-

tion. These simulated hydrographs were compared with the observed flows for each
gauge, obtaining the results presented in Table 6 and Figs. 11 and 12.

The predictive capability for peak discharge is presented in Fig. 11 as a function of10

rainfall time resolution. Range between confidence limits can be seen as length of the
error bars. Most stations show the least variability and the best fit between the median
and the observed value for 15 min. In general, the width of the confidence interval
and the difference between the median and the observed value increase as rainfall
time resolution moves away from 15 min, reaching the maximum in the extreme time15

resolutions, i.e. 6 and 30 min. 6 and 30 min also show the largest deviations of the
median from the observed peak at most stations.

The results obtained for the four validation measures are shown in Fig. 12. To allow
for comparison among gauges, RMSE and ME were normalized by observed peak dis-
charge. As shown in Fig. 12, minimum RMSE is reached at all stations except Mogoda20

for 15 min. Model performance is maintained for time resolutions below 12 min, but
decreases sharply for time resolutions above 18 min. Minimum absolute value of bias
is also for 15 min, but the differences for 12 min are small. Although the figure presents
absolute value of bias for the sake of clarity, bias is positive for time resolutions smaller
than 15 min and negative for the rest. Gramenet, Montcada and Mogent stations clearly25

reach the best R2(MQ0.5) for a time resolution of 15 min. Mogoda and Lliça stations
reach the maximum for 15 min, but there are not great differences with the result for
12 min. Garriga reaches the maximum for 12 min. The behavior of CR shows that most
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stations reach the maximum for 15 min, except Lliça, where the maximum corresponds
to 12 min. Maximum of R2(MQ0.5) and CR is reached in 15 min for most of basins and
minimum variability in the peak discharge time step is reached in 15 min for five of six
stations.

It seems that the decrease of model performance with increasing time resolution5

can depend on the maximum time resolution to characterize the rainfall variability in
time. This minimum is 15 min, as can be seen in Fig. 12(a–b). The decrease of model
performance in validation for time resolutions lower than 15 min can be due to the
minimum time resolution required for the hydrological model to characterize the runoff
processes. These results lead to 15 min as the best rainfall time resolution for the10

Besòs basin, in order to achieve a good representation of rainfall characteristics and a
good simulation of hydrological processes.

5 Discussion and conclusions

Distributed hydrological modeling is heavily dependent on spatial distribution of rainfall
data. Because of that fact, an effort was made on coupling radar data into a hydrologi-15

cal model in flash-flood cases recorded in Catalonia.
This contribution has been revealed as a good example of the numerous problems

that exist in QPE. Firstly, the traditional ZR power-law relationships have not worked
well when applied to the selected cases. It is difficult to determine with certainty
whether this problem might be associated with poor calibration or maintenance of the20

radar network or to the attenuation caused by the own heavy precipitation. In order
to obtain a suitable QPE, a Window Probability Matching Method (WPMM) and an
advection correction have been applied in this work.

Results show that the proposed methodology represents a good improvement of
radar rainfall estimation in 75% of the cases. Furthermore, in spite of the dependence25

of the WPMM on the selected probability distribution fitting function, it has been shown
that the rainfall estimation improves with the two tested functions. Accordingly, it is
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interesting that the minimum root mean square is obtained by fitting parametric func-
tions. Initially, the empirical pdf was tested in order to reproduce exactly the original
WPMM technique. However, the results not only in the lower tail of the distribution, but
also in the higher reflectivity tail show a poor stability over the SD test. For this rea-
son, a smooth non-parametric technique (Kernel smooth pdf) was tested. The results5

improve slightly but the stability is already not high enough. For this reason, several
parametric functions have been tested.

The best-fitting parametric functions are the Gamma one for reflectivity and the expo-
nential one for rainfall intensity. As is well known, the Gamma function has a potential
form multiplied by an exponential function. Because the exponential function does not10

have the potential factor, the straight relation between rainfall intensity and reflectivity
produces a curve of k order in the logarithmic axis. The result of this linear relationship
between the two different functions is a non-power-law relation for the transformation
of reflectivity in rainfall intensity that increases the quantitative precipitation estimation
due to the convex shape of WPMM function in semilog rainfall intensity – reflectivity15

axis. On the other hand, the smallest bias is usually obtained with non-parametric ker-
nel function fitting. In this methodology, both rainfall and reflectivity values are fitted by
means of the same function. Moreover, this function is not parametric, but was built
by convolution of Gaussian functions. So, the final Z/R shape relation does not have a
predefined form due to the linear relation of the function, as happened with parametric20

functions. The shape obtained by this method is probably the classic power-law rela-
tion. Comparing both methodologies, the parametric function provides an increase of
lower reflectivity values and a decrease of higher values, whereas the non-parametric
methodology produces a similar shape but displaced to the right, which causes a rain-
fall intensity increase for all reflectivity values. The second correction made by WPMM25

non-parametric methodology could be related with a sub-estimation of reflectivity due
to the power parameter calibration or own rainfall attenuation.

Taking into account the improvement that involves a convective/stratiform distinction,
two Z/R relations are obtained, respectively. This new QPE method gets better results
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for BIAS index, which means a decrease of the total rainfall field. Furthermore, the
new WPMM Z/R relation shape is less convex than the previous one. Accordingly, this
approach should be useful for obtaining better QPEs results if a more in-depth rain
regime research were carried out.

After that, an advection correction was applied to correct the rainfall amount. It is5

based on the hypothesis that rainfall intensity is a field in continuous variation. This
method is applied in several meteorological services to accumulate the rainfall during
an hour. In the present work, this technique was applied to every six radar rainfall
fields with two objectives. The first one was to improve the total rainfall estimation; the
second was to increase the temporal resolution in order to feed the hydrological model.10

By applying this method the root mean square error decreased, although bias did not
show this behavior. The cause could be the significance of each improvement. The
root mean square error is more closely related with the points error, whereas bias is
mainly related to the entire rainfall field.

The combined application of both methodologies to correct QPE reduced RMSE by15

up to 40% and bias between 75% and 95%. These accurate results allow us to couple
radar rainfall information across the area-weighted interpolation.

Once a more accurate rainfall field had been obtained for each 6-minute interval,
it was entered in the hydrological model. Due to the fact that calibration of distributed
hydrological models is strongly dependent on time resolution of rainfall data, the advec-20

tion correction method based on cross-correlation technique was applied to implement
a temporal disaggregation in several time resolutions (30, 24, 18, 15, 12, 6 and 2 min).
Resolutions lower than 6 min lead to unaffordable computation times for operational
hydrological forecasting. Accordingly, only the higher six time resolutions were com-
pared. A probabilistic calibration was applied to three case studies in order to obtain25

the probability density functions that best represent the variability of each model pa-
rameter. The calibration was validated with the last episode. This sensitivity analysis
of the RIBS model reached the conclusion that a precipitation time resolution of 15 min
is recommended for the simulation of the Besòs catchment. The selected precipitation
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time resolution compares well with the results presented by (Berne et al., 2004), who
studied urban basins up to 100 km2 and found a strong relationship between basin size
and minimum required rainfall spatial and temporal resolution. They suggested for their
upper limit of 100 km2 a rainfall minimum temporal resolution of 12 min. The basins an-
alyzed in this work range from 100 to 1000 km2 and present an optimum time resolution5

between 12 and 15 min. The results also suggest a lower dependence of rainfall reso-
lution from basin size for the range analyzed, which could also be extrapolated to larger
basins. Furthermore, the optimum rainfall resolution time could be related with the lag
time that would be obtained for a basin with an average slope for the Besòs Basin and
2 km distance of radar pixel as longitude.10

This work proved that the highest available rainfall time resolution does not necessar-
ily provide the best results in terms of predictive capability of peak flow while the radar
system is coupled with a distributed hydrologic model. For the optimum time resolution
of 15 min, an RMSE average improvement of 16% was obtained for all sub-basins ana-
lyzed when compared to the 6 min time resolution case, with values larger than 10% for15

all individual basins. Results for other basins could vary across the Mediterranean, due
to the influence on basin response of other characteristics not analyzed in this work,
such as geomorphology, geology, vegetation, etc. Therefore, a previous analysis of the
optimum rainfall time resolution is recommended in order to improve performance of
real-time flash flood forecasting schemes.20
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Table 1. Rainfall amount and intensity for the four study events over the entire domain of
Catalonia and over the Besòs Basin.

Max. rainfall Max. rainfall
amount (mm) intensity (mm/h)

Data Catalonia Besòs Catalonia Besòs

2/08/2005 57.1 55.0 117.6 117.6
11–13/10/2005 348.2 81.7 129.6 108.0
13–15/11/2005 148.1 46.4 118.8 80.4
12–14/09/2006 266.1 117.6 249.6 135.6
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Table 2. Basin area (km2), length of the main watercourse (km), slope between maximum and
minimum elevation (m/m) and time of concentration by the Kirpich formula (h) for Besòs basin
stations.

Area (km2) L (km) S(m/m) tc (h)

Mogoda 111 31.83 0.026 3.87
Lliça 146 38.71 0.023 4.73
Garriga 151 26.41 0.026 3.36
Mogent 182 36.66 0.032 3.99
Montcada 221 43.24 0.015 6.15
Gramenet 1012 63.45 0.015 8.26
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Table 3. Summary of calibration results for each parameter and all time resolutions. Table
shows mean value (µ) and standard deviation (σ) of the parameter distribution.

Parameter

Time resolution log10(f ) [mm−1] α[−] Kv [−] Cv [m h−1]
(min) µ σ µ σ µ σ µ σ

6 −3.05 0.92 41.6 25.8 10.1 2.82 4680 1654
12 −2.15 0.71 48.6 28.9 10.9 1.80 4643 1220
15 −2.63 0.68 53.4 27.1 11.3 2.15 4397 1313
18 −2.30 0.51 48.9 30.6 10.7 1.75 4563 1818
24 −2.32 0.29 44.0 28.8 10.1 1.95 4593 1655
30 −2.65 0.69 50.6 24.4 11.1 2.77 3415 1439
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Table 4. Validation results for the eight relationship in each of the four study cases. The
numbers in the second row represent the PDF fitting method, being 1 exponential-Gamma and
2 for the Kernel smoothing density function.

Validation August 05 October 05 November 05 September 05
Calibration 1 2 1 2 1 2 1 2

BIAS 0.28 0.13 0.07 −0.17 0.03 −0.19 −0.09 −0.30
August 05 Error 6.89 3.28 4.78 −21.99 17.96 −5.61 −17.90 −45.30

RMSE 1.64 1.30 1.89 2.39 4.78 4.03 3.38 4.29

BIAS 0.33 0.32 0.02 −0.09 −0.03 −0.13 −0.12 −0.19
October 05 Error 10.09 12.64 −1.83 −12.81 7.92 3.51 −21.30 −30.58

RMSE 1.88 2.35 1.73 1.98 4.10 4.64 3.28 3.57

BIAS 0.21 0.19 −0.09 −0.19 −0.14 −0.23 −0.23 −0.31
November 05 Error 4.19 4.94 −16.85 −25.12 −9.34 −12.65 −39.10 −46.58

RMSE 1.12 1.26 2.09 2.40 3.26 3.72 3.88 4.22

BIAS 0.45 0.41 0.17 0.02 0.13 −0.02 0.02 −0.09
September 06 Error 17.06 19.67 24.09 3.62 36.84 25.67 6.84 −11.37

RMSE 2.84 3.52 2.28 2.04 6.43 6.64 3.33 3.34
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Table 5. Comparison of results between previous best rainfall estimation method and advection
correction to the same rainfall estimation.

Best previous results Advection results

Index BIAS Error RMSE BIAS Error RMSE

Aug 05 −0.04 −1.1 1.00 0.002 −0.59 0.92
Oct 05 0.02 −1.83 1.73 0.02 −1.50 1.70
Nov 05 −0.13 3.51 3.26 −0.14 3.06 3.23
Sep 06 0.02 6.84 3.33 0.02 4.20 2.99
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Table 6. Validation results for the selected gage stations.

Time resolution

Gage station Measure 30 min 24 min 18 min 15 min 12 min 6 min

Lliça

RMSE 16.212 11.546 7.577 3.586 3.911 4.142
Bias −12.072 −8.843 −5.939 −1.143 0.325 1.568
R2(MQ0.5) 0.315 0.333 0.392 0.416 0.387 0.360
CR (10%) 0.254 0.319 0.337 0.365 0.440 0.312

Montcada

RMSE 24.398 19.708 16.718 13.993 14.893 16.003
Bias −13.842 −8.157 −5.891 0.548 2.744 5.747
R2(MQ0.5) 0.330 0.376 0.474 0.528 0.474 0.391
CR (10%) 0.522 0.616 0.693 0.789 0.614 0.523

Gramenet

RMSE 85.530 71.237 68.725 60.656 64.435 68.516
Bias −43.843 −25.817 −14.795 10.658 15.365 25.131
R2(MQ0.5) 0.398 0.421 0.438 0.521 0.432 0.356
CR (10%) 0.498 0.520 0.539 0.686 0.592 0.504

Garriga

RMSE 9.726 8.003 7.278 3.108 3.736 4.741
Bias −6.669 −5.142 −3.385 0.005 1.049 1.644
R2(MQ0.5) 0.290 0.307 0.321 0.347 0.382 0.316
CR (10%) 0.284 0.308 0.381 0.490 0.395 0.201

Mogent

RMSE 24.586 21.422 15.130 14.257 15.020 16.460
Bias −7.331 −4.393 −2.524 −1.789 0.214 4.803
R2(MQ0.5) 0.208 0.375 0.472 0.545 0.443 0.346
CR (10%) 0.304 0.389 0.482 0.614 0.589 0.485

Mogoda

RMSE 11.192 7.138 6.234 5.206 4.505 6.213
Bias 7.599 4.100 3.295 2.201 −0.049 3.310
R2(MQ0.5) 0.243 0.388 0.419 0.443 0.438 0.373
CR (10%) 0.284 0.341 0.424 0.543 0.468 0.435
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Fig. 1. Catalonia contour over a DEM. SAIH (ACA rain gauges) and XEMA (SMC rain gauges)
networks, with different time resolutions, are shown.

8032

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/7995/2010/hessd-7-7995-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/7995/2010/hessd-7-7995-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 7995–8043, 2010

Effect time resolution

A. Atencia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 2. Location of the gauge stations: 1-Garriga; 2-Lliça; 3-Mogent; 4-Mogoda; 5-Montcada;
6-Gramenet.
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Fig. 3. Radar window example. Square window of 3×3 pixel dimension is centered over a rain
gauge (red cross).
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(a) Example of an independent rainfall window
dataset: Evolution of 5-minute rainfall rate for a pe-
riod of 30 minutes.

(b) Example of a single independent reflectivity win-
dow dataset: 6-minute reflectivities for a period of 30
minutes (5 radar images) and for the nine pixels com-
prising a window.

Fig. 4: Exemples of a rain gauge (a) and reflectivity (b) independent window.
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Fig. 4. Exemples of a rain gauge (a) and reflectivity (b) independent window. (a) Example
of an independent rainfall window dataset: Evolution of 5-minute rainfall rate for a period of 30
minutes. (b) Example of a single independent reflectivity window dataset: 6-minute reflectivities
for a period of 30 minutes (5 radar images) and for the nine pixels comprising a window.
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(a) (b)

Fig. 5: The upper picture (a) shows density histogram random sub-sample of 25% of the overall
population of rain gauge data and the Exponential PDF fit. The lower one (b) shows density
histogram for window radar data and Gamma PDF fit.
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Fig. 5. The upper picture (a) shows density histogram random sub-sample of 25% of the overall
population of rain gauge data and the Exponential PDF fit. The lower one (b) shows density
histogram for window radar data and Gamma PDF fit.

8036

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/7995/2010/hessd-7-7995-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/7995/2010/hessd-7-7995-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 7995–8043, 2010

Effect time resolution

A. Atencia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 6. The new Z/R relation (solid middle line), as obtained from WPMM for the full dataset.
The broken lines represent plus and minus one standard deviations from the Z/R when calcu-
lated by population from 1% to 50% sub-samples.
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(a) Division of the first image into templates (solid
lines) and search area (dashed line) corresponding to
the central template.

(b) Vector indicating where in the second image the
centre of the window (dotted line) closest to the orig-
inal template (solid line) lies.

Fig. 7: Both pictures, (a) and (b), are extracted from Dransfeld et al. (2006).
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Fig. 7. Both pictures, (a) and (b), are extracted from Dransfeld et al. (2006). (a) Division of
the first image into templates (solid lines) and search area (dashed line) corresponding to the
central template. (b) Vector indicating where in the second image the centre of the window
(dotted line) closest to the original template (solid line) lies.
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Fig. 8. Real example of radar rainfall desegregation. In the above example 3×3 templates
are shown in each image. The original resolution is 6 min and the cross-correlation advection
results in a 1 min resolution.
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Fig. 9. Superposition of Radar pixels over DEM grid over a small domain of Area A2. The
highlighted grey DEM grid pixel is used as example of mismatching between the two grids.
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Fig. 10. Sensitivity analysis on the number of simulations. Mean value of RMSE for the valida-
tion event with 30 min time resolution.
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Fig. 11. Validation results for the peak discharge as a function of time resolutions, at all station
locations. Observed peak discharge is plotted as solid circle, 5% and 95% percentiles are
plotted as vertical bars and the median is plotted as horizontal dash.
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(a) (b)

(c) (d)

Fig. 12: Validation measures plotted versus rainfall time resolution for all stations. (a)) Root
Mean Square Error (RMSE), standardized by observed peak discharge(b)) Absolute value of
Bias (ME), standardized by observed peak discharge. (c)) Nash-Sutcliffe global efficiency index
R2(MQ0.5) (d)) Containing Ratio for a confidence level of 10% [CR(10%)].
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Fig. 12. Validation measures plotted versus rainfall time resolution for all stations. (a) Root
Mean Square Error (RMSE), standardized by observed peak discharge (b) Absolute value of
Bias (ME), standardized by observed peak discharge. (c) Nash-Sutcliffe global efficiency index
R2(MQ0.5) (d) Containing Ratio for a confidence level of 10% [CR(10%)].
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